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Abstract. In this paper we give a survey of the state of the art in the
application of formal methods to the analysis of cryptographic protocols.

We attempt to outline some of the major threads of research in this area,

and also to document some emerging trends. : : :

1 Introduction

A cryptographic protocol is meant to provide secure services. However, if the
protocol is not designed correctly, it may fail to do so. A hostile intruder may
be able to subvert the goals of the protocol by feeding false messages to honest
users of the system. If the protocol is not designed to check these false messages
adequately, then the intruder's action may result in some security failure such
as key compromise or false authentication. Such security aws in a protocol can
be subtle and hard to �nd; a number of examples exist in the literature of aws
that were not found for some time in protocols that had received extensive hand
analysis. Examples include the Needham-Schroeder key distribution protocol
[30], which was found by Denning and Sacco [10] to allow an intruder to pass o�
an old, compromised session key as a new one, the software protection scheme
of Purdy, Simmons, and Studier [33], for which Simmons [35] showed how an
intruder could combine previously generated messages in such a way that the
system could be induced to grant unauthorized access to software, and a protocol
in the CCITT X.509 draft standard [9], for which Burrows, Abadi, and Needham
[6] showed that an intruder could cause an old session key to be accepted as a
new one, whether or not it had been compromised. These examples describe only
a few of the documented cases; numerous others exist.

These kinds of problems appear to be well suited for the application of formal
methods. They are well-contained enough so that modeling and analysis should
be tractable; on the other hand, they are complex enough and the aws are
counterintuitive enough so that an informal analysis may be too prone to error
to be reliable. Formal methods have long been used in the analysis of communi-
cation protocols in general, and some promising work was done in the analysis
of cryptographic protocols in the late 70's and early 80's [13, 12, 27]. But in
general, interest in the application of formal methods to cryptographic protocols
did not become widespread until the early 90's, when several researchers were
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able to �nd heretofore undiscovered security aws in cryptographic protocols by
using formal analysis techniques.

In this paper we give a survey of the state of the art in the application
of formal methods to the analysis of cryptographic protocols. In general, we
will avoid the discussion of methods, such as zero-knowledge and polynomial
reduction, that rely on studying the complexity-theoretic properties of the cryp-
tographic algorithms involved, and which are already well-documented in the
literature (e.g. in [15]), and instead concentrate on recently developed methods
devised to study properties of protocols that are for the most part independent
of the properties of the cryptoalgorithms involved. We will attempt to outline
some of the major threads of research in this area, and also to document some
emerging trends.

The rest of this paper is organized as follows. In Sections 2 and 3 we de-
scribe the two most commonly followed approaches to the applications of for-
mal methods to cryptographic protocol analysis: the use of methods based on
communicating state machine models, and the use of logics of knowledge and
belief. In Section 4 we will discuss an approach that has not been followed by
as many people, but has been successful in modeling some subtle properties of
cryptographic protocols, that is, the use of algebras to model the state of an in-
dividual's knowledge about words used in a protocol. In the remaining sections
we will discuss some open issues and emerging trends in the formal analysis of
cryptographic protocols. These include model granularity, requirements model-
ing, and the use of formal methods in the design of new protocols as opposed to
the analysis of existing ones.

2 Methods Based on State Machines

Most versions of the state-machine approach embody at least some aspects of the
work of Dolev and Yao [13] and of Dolev, Even, and Karp [12]. In the Dolev-Yao
model, the network is assumed to be under the control of a intruder who can
read all tra�c, alter and destroy messages, create messages, and perform any
operation, such as encryption, that is available to legitimate users of the system.
However, it is assumed, at least initially, that the intruder does not know any
information that is to be kept secret, such as encryption keys belonging to honest
users of the system.

Since the intruder can prevent any message from reaching its destination, and
since he can also create messages of his own, we may treat any message sent by
an honest user as a message sent to the intruder and any message received by an
honest user as a message received from the intruder. Thus the system becomes
a machine used by the intruder to generate words. These words obey certain
rewrite rules, such as the fact that encryption and decryption with the same
key cancel each other out. Thus we can think of the intruder as manipulating
a term-rewriting system. If the goal of the intruder is to �nd out a word that
is meant to be secret, then the problem of proving a protocol secure becomes a
word problem in a term-rewriting system. Dolev et al. use this observation to



develop several algorithms to analyze restricted classes of protocols in terms of
their properties as term-rewriting systems.

The Dolev-Yao model is too restricted to be useful for the analysis of most
protocols. First, it can only be used to detect failures of secrecy; second, it
does not allow participants to remember state information from one state to the
next. Thus, most protocol analysis methods that use the intruder-based Dolev-
Yao model as a basis generally augment it with more conventional protocol
modelling techniques to describe the behavior of the protocol participants.

One of the earliest systems to use a Dolev-Yao approach is the Interrogator
developed by Millen [28, 20]. The Interrogator is a software tool that attempts
to locate protocol security aws by an exhaustive search of the state space.
In the Interrogator, protocol participants are modeled as communicating state
machines whose messages to each other are intercepted by an intruder who can
either destroy messages, modify them, or let them pass through unmodi�ed.
Given a �nal state in which the intruder knows some word which should be
secret, the Interrogator will try all possible ways of constructing a path by which
that state can be reached. If it �nds such a path, then it has identi�ed a security
aw. The Interrogator has not yet found a previously unknown attack on a
cryptographic protocol, but it has been able to reproduce a number of known
attacks [20].

Others have used approaches similar to that of the Interrogator, but have
relied upon human intervention to assist in the search. For example, a search
tool developed by Longley and Rigby [22] has been used to �nd a subtle and
previously unknown aw in a hierarchical key management scheme. The chief dif-
ference between the Longley-Rigby tool and the Interrogator is that the Longley-
Rigby tool allows human intervention. Whenever the system judges that a word
cannot be found by the intruder, the user can intervene and determine whether
or not that is likely to be the case. If the word is judged to be accessible, this
information can be inserted into the database and the search can proceed.

In a di�erent vein, Kemmerer has shown how cryptographic protocols can be
modeled in a conventional formal speci�cation language by modeling protocols
in Ina Jo [19, 20]. He has also demonstrated how attacks on protocols can be
modeled in such a language, and has used a speci�cation animation to \walk
through" several such attacks. Like Millen, Kemmerer models cryptographic
protocols as communicating state machines. However, because the protocols are
modeled in a speci�cation language that has a theorem prover attached to it,
it is also possible to use the prover to prove theorems about the security of
the speci�ed protocols, by de�ning security properties as state invariants and
proving that these invariants are preserved by each transition, although this has
not been yet attempted to any great extent.

The NRL Protocol Analyzer [20] is also based on the Dolev-Yao model, and
uses a strategy similar to the Interrogator and the Longley-Rigby tool. As in the
case of Millen's Interrogator, one uses the tool to �nd protocol security aws by
specifying an insecure state and attempting to construct a path to that state from
an initial state. Unlike Millen's Interrogator, an unlimited number of protocol



rounds are allowed in a single path, so that the state space is in�nite. This allows
the Analyzer to discover attacks that rely on the intruder's ability to weave
several di�erent runs of a protocol together. For example, such an attack was
found in [41]. Also unlike the Interrogator, the emphasis is, not only on �nding
paths to insecure states, but on proving that these states are unreachable. This
is made possible by having the user prove that certain paths leading backwards
from the insecure state go into in�nite loops, never reaching an initial state.
Once these paths have been eliminated, the resulting search space is often small
enough to search exhaustively. The proofs that paths lead into in�nite loops are
largely guided by the user; thus the search is much less automated than in the
Interrogator.

Although the NRL Protocol Analyzer primarily emphasizes proofs of state
unreachability, it can also be used to �nd aws in protocols by generating paths
to insecure states, and it has been used to �nd several previously undiscovered
security aws in cryptographic protocols. It has been used [25] to �nd an authen-
tication aw in Simmons' Selective Broadcast Protocol [35] and has also been
used [24] to �nd a aw in Burns and Mitchell's Resource Sharing Protocol [5].
The Analyzer has also been used to demonstrate several aws that were already
known to exist, including one in the Tatebayashi-Matsuzaki-Newman protocol
whose aw is demonstrated in [20], and one in a draft ISO authentication pro-
tocol, whose aw is discussed in [11].

3 Systems Based on Modal Logic

The other approach that has been followed in the application of formal methods
to cryptographic protocol analysis is to use modal logics similar to those that
have been developed for the analysis of the evolution of knowledge and belief
in distributed systems. Such a logic consists of various statements about belief
in or knowledge about messages in a distributed system, and inference rules for
deriving beliefs from other beliefs andor knowledge from other knowledge and
beliefs. A discussion of research in this area is given by Syverson in [42].

Perhaps the best known and most inuential such logic was that developed
by Burrows, Abadi, and Needham [7], commonly known as BAN logic. BAN
logic builds upon statements about messages sent and received throughout the
course of a protocol. For example, one such belief, stated informally, would be:
\If I believe I've received a message encrypted with key K, and I believe that
only Alice and I know K, then I believe that the message was originated by either
Alice or me." In an analysis of a protocol, an initial set of beliefs is assumed.
Each message received is then mapped to another set of beliefs. One then uses the
inference rules to determine what beliefs can be derived from the initial beliefs
and the beliefs gained from participating in the protocol. If the set of beliefs is
adequate, according to some prede�ned notion of adequacy, then the protocol is
assumed to have been proven correct. If the set of beliefs is not adequate, then
it may lead to the discovery of a security aw in the protocol. This logic, which
is meant to be used to prove results about replay attacks in key distribution



protocols, was successfully used by its authors to �nd previously unknown aws
in a protocol that appeared in a draft recommendation for the CCITT X.509
standard [9].

BAN logic is the best known of the modal logics developed for cryptographic
protocol analysis. But there are a number of others. These include Bieber's
CKT5 [4] and Syverson's KPL [38], both of which reason about knowledge,
Rangan's logic of trust [34], which reasons about trust and belief, Moser's logic
[29], which reasons about knowledge and belief, and the system of Yahalom,
Klein, and Beth [49], which reasons about trust. Syverson's logic can be used
to reason about the two kinds of knowledge an intruder may have: knowledge
of the word in the sense of seeing a string of bits, versus recognition of the
signi�cance of the words. Rangan's logic can be used to reason about the e�ect
of trust in the composition of secure communication channels, and is intended
to provide a formal basis for the evolution of belief from trust. The system of
Yahalom, Klein, and Beth is used to derive information about the nature of the
trust that parties in a protocol must have in each other in order for a protocol
to operate correctly. Moser's logic, the only nonmonotonic one considered here,
can be used to reason about the way in which beliefs developed through use of
cryptographic protocols can be reversed, for example, by learning that a key used
in a secure communication was compromised. Bieber's logic, CKT5, can be used
to reason about the evolution of knowledge about words used in a cryptographic
protocol; like Syverson's logic, it makes a distinction between seeing a message
and understanding its signi�cance.

BAN logic has proved to have been by far the most widely used of these
logics. Interestingly enough, BAN logic does not attempt to model a protocol in
anywhere near the richness as other logics do. BAN does not attempt to model
the distinction between seeing a message and understanding it; they are both
treated the same way. Likewise, unlike Moser's logic, BAN does not attempt to
model the revision of beliefs; the evolution of beliefs in BAN is always monotonic.
Moreover, BAN does not attempt to model trust or the lack of it; in BAN logic all
principals are assumed to behave according to the rules of the protocol. Finally,
since BAN does not attempt to model knowledge, it can not be used to prove
results about secrecy; it can be used only to reason about authentication.

BAN's avoidance of these issues is intentional, and it makes for a simple,
straightforward logic that is easy to apply and still useful for detecting aws.
This simplicity, combined with its usefulness, is much of the secret of its pop-
ularity. However, it also means that the issues it avoids must be addressed in
the informal mapping from protocol speci�cation to BAN speci�cation. This has
caused some uneasiness among many. For example, Nessett [31] has constructed
a counterexample that makes use of the fact that BAN does not reason about
secrecy. His example is of a protocol that can be proved to be secure using BAN
logic, but is fact divulges a principal's secret key because of bad protocol design.
Burroughs, Abadi, and Needham [7] have responded that this example violates
one of the assumptions of the logic, namely, that principals do not divulge their
secret keys. However, Nessett's example makes the point that this assumption



is one that needs to be veri�ed, since keys can be leaked not only by dishonest
or incompetent principals, but as the result of the protocol itself.

To show how subtle the reasoning behind the mapping from protocol speci�-
cation to BAN logic can be, we consider the following protocol due to Aziz and
Di�e [2], which was analyzed using BAN logic in their paper. The protocol runs
as follows:

1. A ,! B : CertA, NA, other1
2. B ,! A : CertB , KA(RB),K

�1

B
(hash(KA(RB),other2,NA,other1))

3. A ,! B : KB(RA),K
�1

A
(hash(KB(RA),KA(RB)))

where CertX is X's public key certi�cate, RA and RB are used to construct
a session key, NA and RB are nonces used to guarantee freshness, other1 and
other2 is information not relevant to this discussion, hash is a hash function, and
encrypted messages are formatted in a way that is recognizable by the recipient.

In the idealization of the protocol, the second step is mapped to an assertion
that B once said that RB was a good key for communication between A and B.
But, how does A arrive at this fact? A decrypts the �rst part of the message and
veri�es that it is a meaningful message, which A can do since the message has a
recognizable format. From the format, and from the fact that it was encrypted
with A's key, A concludes that the message was intended for her, and that it is
a message saying that RB is a good key for communication between A and B.
A also veri�es the signature on the encrypted message so that she knows that B
sent the message. Now she is able to conclude that it was B who said that RB
is a good key for communication between himself and A.

This reasoning is subtle, and fails if the assumption that the encrypted mes-
sage is formatted is violated. In that case, one can mount the following attack1,
where I is the intruder, and IX denotes the intruder impersonating X:

1. A ,! B : CertA, NA, other1
(intercepted by I)

2. IC ,! B: CertC, NA, other1
3. B ,! C: CertB, KC(RB), other2, K

�1

B
(hash(KC(RB),other2, NA,other2))

4. IB ,! A : CertB, KC(RB), other2, K
�1

B
(hash(KC(RB),other2, NA,other1))

A checks the signature, and applies its private key to KC(RB) to obtain
K�1
A
(KC(RB)), which she then thinks is the key.
We note that this attack results in at worst a denial of service, since, although

the intruder convinces A that a nonkey is a key, the intruder never learns the
word that A accepts as a key, and thus cannot impersonate A or B or read
encrypted tra�c. However, the conclusion of the BAN analysis, that A believes
that the word she receives is a good key for communication with B, no longer
holds. A no longer has su�cient grounds for drawing that conclusion.

BAN logic will not help its user in distinguishing between the �rst, correct,
version of the protocol and the other, incorrect version. Cases like this and the

1 This attack was found using the NRL Protocol Analyzer.



Nessett counterexample have caused some concern, and have resulted in various
e�orts to increase BAN logic's e�ectiveness. Basically, there are two kinds of
approaches that have been taken. One, that followed by Kailar, Gligor, and
Gong in [18], is to identify the assumptions that will guarantee that BAN logic
is sound if they hold. These assumptions can in turn be veri�ed informally or
formally, thus allowing other formal methods and assurance techniques to come
to the assistance of BAN logic. The other approach is to increase the scope of
BAN logic itself. This is the approach taken by Gong, Needham, and Yahalom
in their GNY logic [16], an extended version of BAN logic. This logic includes,
among other things, rules for reasoning about message recognizability that makes
it possible to reason about a principal's ability to recognize that a bit string is
a meaningful message. However, GNY logic is complex, containing over �fty
rules, many of them complicated themselves. This has led many to reject this
approach as being impractical. It may be, however, that all that is needed is a
more systematic approach to the problem. Syverson and van Oorschot [43], for
example, have been able, by unifying a number of di�erent logics and developing
a common semantics, to simplify them so that they become more tractable, but
without sacri�cing expressiveness.

4 Using Algebras to Reason About Knowledge

Another approach to applying formalmethods to cryptographic protocol analysis
is to model the protocol as an algebraic system, similar to the way in which
Dolev and Yao model protocols, but to use the algebra to express the state of
the participants' (including the intruders') knowledge about the protocol. This is
an area that has not received as much attention as the state-machine and logical
models discussed above, but the fact that it is able to combine a detailed model
as in the state machine approach with an ability to reason about evolution of
knowledge comparable to that found in logics of knowledge and belief means, in
the opinion of this author, that it merits a closer look.

This approach was �rst used by Merritt in his PhD thesis [27]. Merritt makes
use of hidden automorphisms to express an intruder's lack of knowledge about
the contents of a message. Suppose, for example, that a principal views a message
e(k,m) (denoting the encryption of mwith k), where that principal does not know
k. Suppose furthermore that we de�ne an automorphism h of the space of words
such that h(m)= n for some n, but all other words are left invariant. Then the set
of messages known by the principal is invariant under h, (in particular h(e(k,m))
= e(k,m)). Thus e�ects of the automorphism are invisible to the principal, and
can be used to de�ne formally the principal's ignorance of m. Merritt uses this
model to prove results about secrecy that are considerably more subtle than the
simple secrecy of words; for example, he is able to prove that the correspondence
between votes and individual voters in a voting protocol is unknown, even when
all the voters and all votes are public.

Another approach to incorporating knowledge into an algebraic model is that
taken by Toussaint [44, 45, 46]. In her model the set of words used in a protocol



is expressed by an isomorphism between a free algebra with operators encryp-
tion and decryption and a crypto-algebra. A participant's state of knowledge
is de�ned by three sets, F, V, and SV. F is a set of pairs (a,b) where a is a
generator of the free algebra and b is its image in the crypto-algebra. These cor-
respond to words that the principal has seen. V (or variables) consists of pairs
of the form (x,y) where x is a generator of the free algebra and y is a variable.
These correspond to words that the principal is aware of but has not yet seen.
SV (or semi-variables) consists of pairs of the form (z,a) where a is an element
of the crypto-algebra and z belongs to some set of possible encryptions and de-
cryptions. These correspond to such things as the enciphering of messages under
unknown keys. The principal knows the structure of the message, but has only
limited knowledge about the input. Toussaint shows how this model can be used
to describe evolving states of knowledge, and how attacks can be detected by
a principal's seeing an inconsistency between messages received and its state of
knowledge of the words used in the protocol.

Another approach is to use annotation of words used in algebraic models.
This is the approach used by Meadows in [23] to extend the model used by the
NRL Protocol Analyzer to reason about protocols that are designed to prevent
against attacks in which an intruder may have partial knowledge of the secret
words used in a protocol. An example of such an attack would be the case in
which a protocol makes use of a password that belongs to a very small key space.
A number of protocols have been developed to minimize the bad e�ects of such
passwords, in particular the authentication protocol of Lomas, Gong, Saltzer,
and Needham [21]. In Meadows' model each word has a type appended to it,
which represents the knowledge the intruder has about a word. Some types are
subtypes of other types, and thus reect the intruder's increasing knowledge
about the word. Thus a word may be of type possible password, meaning that
it belongs to the space of possible passwords, or it may be of type password,
meaning that the intruder knows that it is a password. Reduction rules are
de�ned for types as well as words, and general rules of inference for deriving
types are given. It is then shown how this approach can be used to model the
guessing of a password, and how the Lomas-Gong-Saltzer-Needham protocol can
be modeled.

Research in this area has not been as active as research in developing and
applying state-machine models and logics of knowledge and belief. However, the
models' success in representing very subtle kinds of knowledge, and the fact that
the objects modeled correspond strongly to entities and messages used in the
tools based on state machines suggest that these models could be used to provide
the state machine tools with a stronger capability of modeling the knowledge that
an intruder could gain. As yet, little research has been done on this problem. In
[23] Meadows attempted to incorporate her extension of NRL Protocol Analyzer
model into the tool itself, but the result was considered unsatisfactory because
of the di�culty of modeling rules for increasing an intruder's knowledge as the
kinds of reduction rules acceptable by the NRL Protocol Analyzer. However, the
general question of whether and how these algebras can be incorporated in state



machine analysis tools is still an open one.

5 Model Granularity and Range

It is unlikely that any formal method will be able to model all aspects of a
cryptographic protocol, and thus it is unlikely that any formal method will be
able to detect or prevent all types of protocol aws. The best we can hope
for is that it will be able to guarantee that the protocol is correct given that
a certain well-de�ned set of assumptions is satis�ed. Thus, for example, most
formalmodels make the assumption that the underlying cryptosystem is perfect,
that is, that an intruder can gain no information about a message that was
encrypted with a key that he does not know. However, it is not always clear
what we should attempt to include in the model, and what should be included
in the assumptions. As we have seen in the discussion in the section on applying
logics of knowledge and belief, much of the controversy over BAN logic concerns
what should be addressed by the logic and what should be left as assumptions
to be veri�ed by other means.

In general, we can state three criteria that should be satis�ed when deciding
whether a feature should be included in a model:

1. Is it possible to include the feature and still have the analysis be tractable?

For instance, although nonmonoticity can be considered a feature of cryp-
tographic protocols, most logics of knowledge and belief that are applied to
these protocols are monotonic, since monotonic logics are in general more
tractable than nonmonotonic ones.

2. How useful is the ability to model the feature?

Does the feature a�ect security? Is the feature likely to fail? Can the feature
be handled in ways that make formal analysis unnecessary, or is the feature
handled by other formal methods?

3. How well de�ned and natural is the boundary between the features modeled
and the features not modeled?

For example, a model that included an intruder's ability or inability to take
discrete logarithms but did not include the ability or inability to factor would
be considered somewhat lopsided, since these two problems are closely re-
lated.

Di�erent systems may choose the cut-o� point at di�erent places. For ex-
ample, logics such as BAN can be thought of as reasoning about the intent of
messages. The veri�cation that a message performs its intended function is done
when the user of BAN logic maps lines in a protocol speci�cation to their ideal-
izations. Burrows, Abadi, and Needham describe the assumptions that will help
to guarantee that this idealization will be correct, but the veri�cation that the
assumptions hold, or that they guarantee the correctness of the mapping, is not
part of the logic.



State-machine-based systems based on the Dolev-Yao model, such as the
Interrogator or the NRL Protocol Analyzer, generally give a more detailed ap-
proach. Messages are represented as concatenations of abstract message �elds,
and properties of cryptographic systems that are necessary to the correct opera-
tion of a cryptographic protocol, such as the fact that encryption and decryption
with the same key in a shared-key system cancel each other out, are also modeled.
However, properties of cryptosystems that may a�ect the security of a protocol,
such as the commutative-associative property of exclusive-or, or the homomor-
phic properties of RSA, are usually not modeled (with a few exceptions: see for
example [14]). Cryptographic integrity mechanisms are also usually not explic-
itly modeled. It is assumed that secrecy and integrity mechanisms do their job,
but it is not asked exactly how the job is done.

It is possible to construct useful models at a lower level of granularity than
this. For example, In [36] Stubblebine and Gligor introduce a model that allows
them to model such things as cryptographically weak checksums (in which, given
a checksum of a message, it is possible to produce another message that evaluates
to the same checksum) versus collision-free checksums (in which, given a message
and its checksum, it is computationally infeasible to produce another message
with the same checksum). Given this model, they were able to uncover a aw in
the Kerberos system that was the result of its using such a weak checksum. The
aw was subtle and involved an intruder's cutting and pasting together di�erent
messages, and disguising the fact that he had done so by his ability to produce
messages that evaluated to the same checksum. Their approach was also used
to �nd a aw in Privacy-Enhanced Mail [37]. Stubblebine's and Gligor's success
in detecting these aws shows that we still have not reached the limits of the
degree of detail which which we can model a cryptographic protocol and still
have fruitful results.

One might be tempted to conclude that only the most detailed models are
useful. But all these models at the various levels of abstraction have their areas
of usefulness. In general, it is most helpful to use the more abstract models at
earlier points in the design stage, when implementation details have not been
yet decided upon. For example, a protocol designer might use BAN or one of the
similar logics to determine what the role of each message of a protocol should be.
He or she might then use a state-based tool when attempting to determine what
the structure of messages should be. Finally, when the actual implementation,
including formatting of messages, choice of encryption systems, and choice of
integrity mechanisms, is in question, it would be most appropriate to use some-
thing like the Stubblebine-Gligor model to determine how these implementation
decisions a�ect the security of the protocol. Such an approach would allow us to
locate errors as early as possible with a minimum amount of work.

6 Requirements Modeling

An area that is beginning to be explored in more depth is the question of how
we specify the correctness of a protocol in the �rst place. Early work on applying



formal methods to protocol analysis concentrated on secrecy, by attempting to
show that an intruder could not learn a particular word or words. This was
quickly realized to be inadequate, since many cryptographic protocols provide
services such as authentication, that are only indirectly related to secrecy. At
this point, it becomes necessary to determine exactly what the goals of a secure
protocol must be.

This problem has been approached from several di�erent angles, some with
the aim of developing a set of criteria that can be applied to protocols in general,
and others with the aim of developing ways to express criteria for a number of
di�erent types of protocols. In [11] Di�e, van Oorschot, and Wiener developed
informal requirements for the correctness of an authentication protocol. Briey,
they say that session keys should remain secret, and that protocol runs should
match. The latter means that, if A and B participate in a run of a protocol, then
A's record of messages received from B matches B's record of messages sent to
A, and vice versa. This notion has been formalized by Bellare and Rogaway in
[3], using a model based on communicating probabilistic Turing machines. In
the Bellare-Rogaway model, certain failure events, such as the compromise of
old session keys, are included, so that the protocol can still be shown to satisfy
matching runs in the face of these failures. Di�e, van Oorshot, and Wiener's
notion of matching runs has also been formalized by Syverson in his extension
of the Abadi-Tuttle logic to include temporal formalisms [39].

In [47] Woo and Lam independently take a similar approach to de�ning
security of key distribution protocols. In this work Woo and Lam de�ne a se-
mantic model characterizing protocol executions. Two basic security properties,
correspondence and secrecy, are de�ned. Secrecy is self-explanatory, while cor-
respondence pertains to the requirement that certain events can take place only
if others have taken place previously. The notion of correspondence thus bears a
resemblance to the notion of matching protocol runs, but it is broader, since the
two events in question do not have to be the sending and receiving of the same
message. Woo and Lam show how to specify authentication protocol require-
ments in terms of assertions about correspondence and secrecy. Like Bellare and
Rogaway, they also specify failure events as part of their model.

Another approach to specifying protocol requirements is shown in the re-
quirements language currently being developed for the NRL Protocol Analyzer
[40]. The requirements speci�ed in this language have a form similar to the no-
tion of correspondence of Woo and Lam, in that the requirements are given on
sequences of events. The di�erence is that, instead of giving a general require-
ment for correspondence that applies to all protocols, the user of the language
speci�es only the requirements that are necessary for protocols belonging to a
particular class to perform their intended functions. Thus requirements will vary
according to the intended function of a protocol. The notion of \event" is also
somewhat broader than that of Bellare and Rogaway or Woo and Lam in that
any state change can be an event. Thus an intruder's learning a word is modeled
as an event. This means that it is unnecessary to de�ne secrecy as a separate
part of the model. Internal state transitions can also be modeled as events. This



makes it possible to model such things as a timestamp becoming obsolete ac-
cording to a principal's internal clock. As in the Woo-Lammodel, failure such as
key compromise can also be modeled as events. In [40] Syverson and Meadows
give a set of requirements for various kinds of message authentication protocols,
while in [41] they give a set of requirements for key distribution protocols with
reauthentication.

In [48] Yahalom takes a similar approach to Syverson and Meadows, but
with di�erent goals. Like them, he describes the various message passing events
that must take place in a key distribution protocol, and states requirements on
a protocol in terms of which events must occur before others. However, he uses
these requirements to determine the minimumnumber of messages that must be
sent in order for a protocol to satisfy these requirements, and then constructs
a protocol that uses this number of messages. Thus his goals are to use the
formulation of protocol requirements to achieve greater performance within the
bounds set forth by the requirements.

Most work on formalizing security requirements for cryptographic protocols
has concentrated on key distribution protocols. However, work on applying this
approach to other areas has begun to appear. In [32] P�tzmann uses a formal
speci�cation language to specify requirements for di�erent kinds of signature
schemes. The goal of her work is provide a classi�cation system for the various
kinds of signature schemes and their security requirements.

We note that there is still much work that remains to be done on security
requirements for cryptographic protocols, and that this work could have far-
reaching implications. Protocols have been developed for such applications as
software protection, secure sharing of resources, and secure transmission of au-
thorization. In general, if any two components of a distributed system engage
in a transaction using a hostile communication medium, then they must make
use of a cryptographic protocol to enforce their security requirements. Thus the
topic of security requirements for cryptographic protocols is very close to the
topic of security models for distributed systems. Once we start talking about
requirements for cryptographic protocols we begin to start talking about what
part of the system supplies what kind of security service to the other parts, what
parts trust other parts and in what way, and so on. These are the very kinds of
issues that must be addressed when we consider the security requirements for
distributed systems in general. Thus in future years we can probably expect the
area of cryptographic protocol analysis and the area of security modeling for
distributed systems to grow closer and closer together.

7 The Use of Formal Methods in the Design of Protocols

Most of the existing work in the application of formal methods to cryptographic
protocols has been concentrated on applying the methods to the analysis of ex-
isting protocols. However, in the long run it would be cheaper and more e�ective
to use the methods in the design of the protocol in the �rst place, and so save
the expense of redesign. In general, not much research has been done in this



particular area. But, we believe that this is mainly because of the youth of the
�eld. The use of formal methods in design as well as analysis is a natural appli-
cation of the technology, and we can expect to see more of it in cryptographic
protocols. In this section we describe some work that has been done so far.

The incorporation of formal methods into design can be done in two ways,
as is the case with the incorporation of formal methods into the design of any
product. One approach is to develop methodologies for design of protocols so
that they will be more amenable to analysis by formal methods. This is the
approach taken by Heintze and Tygar in [17]. In that paper they develop a mod-
ular approach to designing cryptographic protocols, and set forth properties of
modules that will guarantee that their composition satis�es the desired security
properties.

The other approach, which can be used together with the �rst, is a layered
approach, in which a relatively abstract model is used at the top layer, and each
succeeding layer is proved to be an implementation of the layer above it, until
�nally either a detailed speci�cation or the actual protocol code is produced. This
would be a more formal version of the strategy of using increasingly detailed
models that was discussed in the section on model granularity. Much of the
work on requirements speci�cation, such as the Syverson and Meadows work
that we discussed in the last section, has this avor. Also, for the application of
BAN logic, Carlsen [8] has developed a parser that will translate members of a
limited class of protocol speci�cations into BAN logic. The option of integrating
existing tools and methods that use models of di�erent granularity is also an
attractive one. Care must be taken, however, that the models underlying the
methods can be made compatible. For example, in [26] Meadows develops a
model of computation for the NRL Protocol Analyzer and compares it with the
one Abadi and Tuttle [1] have developed for BAN logic. This is used to point
out several important di�erences in the assumptions made by the two models
that would have to be addressed before they were integrated.

8 Conclusion

In this paper we have attempted to give an overview of the state of the art in
the application of formal methods to cryptographic protocol analysis. It is still
a young �eld, so it is not possible to draw any �nal conclusions about the way
in which it is headed. However, we have been able to identify some major trends
and sub�elds, as well as identify some areas in which we believe further research
is needed. We hope that in future years it will continue to build on its successes,
and as it matures, will become a useful part of the secure systems designer's
toolbox.
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